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Abstract

The use of Diesel Particulate Filters (DPFs) on automobiles to reduce the harmful effects of diesel
exhaust gases is becoming a standard in many countries. Although the main purpose of a DPF is to reduce
harmful emission of soot particles it also affects the acoustic emission. This paper presents a first attempt to
describe the acoustic behavior of DPFs and to present models which allow the acoustic two-port to be
calculated. The simplest model neglects wave propagation and treats the filter as an equivalent acoustic
resistance modeled via a lumped impedance element. This simple model gives a constant frequency-
independent transmission loss and agrees within 1 dB with measured data on a typical filter (length 250mm)
up to 200–300Hz (at 20 1C). In the second model, the ceramic filter monolith is described as a system of
coupled porous channels carrying plane waves. The coupling between the channels through the porous
walls is described via Darcy’s law. This model gives a frequency-dependent transmission loss and agrees
well with measured data in the entire plane wave range.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The continuous growth of diesel engines in the market has put focus on the environmental
effects and in particular on methods to reduce the soot particle emission. An ambitious way to
diesel particulate removal is the use of a particulate trap that allows simultaneous soot filtration
and combustion, see Fig. 1.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Photograph of a typical ceramic diesel particulate filter unit with illustration of the flow path through the filter.

The flow enters one channel plugged at the downstream end and then passes through the porous walls into the four

neighboring channels plugged at the upstream end. At the inlet side of the filter close to 50% of the channels are

plugged. A typical width of the square channels is 1–2mm with a wall thickness of a few tenths of a millimeter.
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The particulate trap concept has focused intensive research and development activities around
the world and a variety of systems are today offered by various manufactures. Among the possible
filter types, ceramic foams seem to be the best, especially to meet the requirements of efficient
filtration. Two parameters are of key importance when investigating the effect of a trap system on
a diesel engine [1]: back-pressure and regeneration. The back-pressure is different for different
types of traps and will increase over time as the trap becomes loaded with particles. A high back-
pressure is undesirable, since it increases the fuel consumption and reduces the available power.
Minimizing the back-pressure level while still maintaining acceptable filtration efficiency and
meeting other constraints is the major challenge when designing particulate traps.
Linked to the back-pressure is the removal of soot by trap regeneration. For typical engine

operating conditions this regeneration needs to take place each 500–1000 km. Various strategies
exist for regeneration but normally the soot layer and back-pressure is allowed to grow to a
certain limit, then a regeneration cycle which burns the particles and cleans the trap is initiated.
A significant number of publications exist on back-pressure and regeneration for DPF units,
see e.g., Konstandopoulos and Johnson [2], Konstandopoulos et al. [3] and Masoudi et al. [4].
2. Theory

No previous works on the acoustic modeling of diesel particulate filters seem to exist. But a
summary of the models presented here has been presented earlier by Allam and Åbom [5]. The
purpose of this section is to present two models, a simple one, valid for low frequencies and a
more detailed one, valid in the entire plane wave range. Using the models expressions for the
acoustic two-port of a diesel particulate fitters (DPF) unit will be derived. The proposed models
are based on the following assumptions:
(i)
 Only plane (1-D) acoustic waves are considered,

(ii)
 Linear acoustics is valid,



ARTICLE IN PRESS
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(iii)
 The Mach number ðMÞ is small ðo0:1Þ;

(iv)
 Gradients (temperature, mean flow speed) in the axial direction are neglected,

(v)
 The effects of chemical reactions are neglected.
Comments:
(i)
 For the application to automobile exhaust systems analysis in the low-frequency plane wave
range is normally sufficient.
(ii)
 The DPF is close to the manifold junction where the first engine harmonics can have levels up
to 160–170 dB. The frequency of these dominating harmonics is low (less than 100Hz) so the
shock formation distance is typically much longer than the length of the exhaust system.
Furthermore, for open ended systems as exhaust systems, wave steepening effects are
weakened by successive reflections at sudden area expansions where the reflection coefficient is
negative [6]. Therefore, under steady (non-transient) running conditions for an engine
nonlinear wave propagation effects are of minor importance, instead local nonlinearities
associated with flow separation at constrictions (small holes) dominate. Such local nonlinear
effects are related to the turbulent (quadratic) pressure drop for an element. For DPF units at
hot conditions laminar flow conditions dominate and the quadratic pressure drop contribution
is very small (see Section 3.2), which implies that local nonlinearities should be weak.
(iii)
 To reduce the back-pressure a DPF is normally placed in an expansion chamber so that the
mean flow speed is reduced. Typically the reduction is of the order of 10 which is reduced to a
factor 3–5 due to the contraction when the flow enters the filter. Since the Mach number in an
exhaust system normally is less than 0.3 this implies that Mo0:1:
(iv)
 Gradients will exist but a constant ð¼ averageÞ value for the mean flow speed and the
temperature (speed of sound) will be shown to be a good approximation.
(v)
 Chemical reactions (the burning of soot) will mainly occur during the regeneration of a filter.
2.1. The lumped impedance model

In this model wave propagation is neglected and the filter is simply treated as an acoustic
resistance. The model will be valid in the low-frequency range where the wavelength is much
larger than the length of a filter unit. Typically for an automobile filter this means up to
200–300Hz at cold conditions (20 1C) and 400–600Hz under operating conditions (500 1C).
To obtain the acoustic resistance it is assumed that the acoustic field acts as a quasi-stationary

disturbance of the pressure-drop over the filter unit. As described in the literature the steady flow
pressure-drop DP over a DPF follows Darcy’s law with Forchheimer’s extension [7] and can be
described as

DP ¼ R1U0 þ R2U
2
0, (1)

where U0 is the flow speed, R1 is equal to the linear ‘‘viscous’’ flow resistance and R2 is the
quadratic flow resistance. Differentiating this equation gives

dðDPÞ ¼
R1 þ 2R2U0

A

� �
dQ, (2)
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where dQ ¼ dU0A is volume flow and A the filter cross-sectional area. Eq. (2) implies that the
acoustic resistance Rac is given by

Rac ¼
R1 þ 2R2U0

A

� �
. (3)

Since the Mach number in the filter is small ðMo0:1Þ continuity of volume flow can be assumed
and the two-port (in transfer matrix form) for a lumped resistance model becomes

p

q

 !
IN

¼
1 Rac

0 1

� �
p

q

 !
OUT

, (4)

where p is acoustic pressure, q acoustic volume velocity and (IN, OUT) denote the inlet and outlet
of the filter.

2.2. The 1-D wave model

With reference to Fig. 2 a unit cell in a filter can be split into 5 sections: the inlet cross-section
(IN), a short narrow pipe with hard impermeable walls (I); the filter section consisting of narrow
pipes with porous walls (II); a short narrow pipe with hard impermeable walls (III) and the outlet
cross-section (OUT). In the plane wave range these sections can be described via two-port transfer
matrices (T). The resulting transfer matrix for a filter unit is then simply

TDPF ¼ TINTITIITIIITOUT. (5)

2.2.1. The filter section (II)
The governing equations for acoustic waves can be derived by linearizing the 1-D fluid dynamic

equations for a DPF presented in Ref. [2]. Assuming a homogenous mean flow and ambient state
this gives for the equation of continuity

qrj

qt
þ Uoj

qrj

qx
þ roj

quj

qx
¼ ð�1Þj

4rw

dhj

uw, (6)

and the equation of momentum

roj

q
qt

þ Uoj
q
qx

� �
uj ¼ �

qpj

qx
� ajuj. (7)
Fig. 2. Cross-section of a unit cell in a DPF split into five sections each described by an acoustic two-port. Note, the

filter section (II) is actually an acoustic four-port but can be reduced to a two-port due to the hard walls in section I

and III.
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Fig. 3. Neighboring channels in a DPF unit. The flow and the acoustic waves enter the channels (1) open upstream and

closed downstream, then pass through the porous walls into the channels (2) closed upstream and open downstream.
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Here j ¼ 1; 2 denotes the inflow (1) and outflow channel (2), see Fig. 3, ro and Uo denote the
time average density and axial flow speed, and u; r; p denote the fluctuation in axial particle
velocity, density, and pressure, uw is the particle velocity fluctuation through the wall, rw is
the gas density in the porous wall and dh is the width of the quadratic channels. In the limit
of very narrow channels and low frequencies, laminar flow can be assumed and the pressure
drop factor will be a ¼ m�=d2

h; where m is the dynamic viscosity and � is the channel pressure
drop factor. Since the local flow passing through the walls is only a small fraction of the total axial
mean flow, the velocity profile should be close to that observed for laminar flow in a quadratic
duct with impermeable walls which implies � ¼ 28:45 [2,4].
The coupling between the fields in channels 1 and 2 is via the porous walls. Since these walls are

very thin the steady-state flow resistance (Darcy’s law) will apply also to the fluctuating acoustic
fields [8]. A constant (frequency-independent) wall resistance can therefore be defined as

Rw ¼ ðp1 � p2Þ=uw. (8)

This wall resistance can be linked to the properties of the porous wall and the gas [2–4] by

Rw ¼
mwht

sw

, (9)

where mw is the dynamic viscosity, ht thickness and sw is the permeability of the wall.
To solve the problem a propagating wave ansatz is made and harmonic space and time

dependence introduced. Suppressing the harmonic time dependence ðeiotÞ the fluctuating
quantities can then be written as

pjðxÞ ¼ p̂je
�iKx; ujðxÞ ¼ ûje

�iKx,

p̂j ¼ c2j r̂j,

p̂j ¼ Zjûj, ð10Þ

where tilde denotes complex amplitude, K is the complex wavenumber, c is the speed of sound
and Z is the characteristic wave impedance. Substituting Eqs. (8) and (10) into Eqs. (6)
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and (7) gives

io
c2j

p̂j þ
Uoj

c2j
ð�iKÞp̂j þ rojZ

�1
j p̂jð�iKÞ ¼ ð�1Þj

4rw

dhjRw

ðp̂1 � p̂2Þ, (11)

rojðioþ Uojð�iKÞÞZ�1
j ¼ iK � ajZ

�1
j . (12)

From Eq. (12) the characteristic wave impedance can be obtained

Zj ¼
rojo� iaj � rojUojK

K
¼

rojcjðk
0
j � MjKÞ

K
, (13)

where Mj ¼ Uoj=cj; k0
j ¼ kj � iaj=rojcj and kj ¼ o=cj: Substituting Eq. (13) into Eq. (11) gives

ikj

cj

� �
p̂j �

iMjK

cj

� �
p̂j �

iK2

cjðk
0
j � MjKÞ

p̂j

¼ ð�1Þj
4rw

dhjRw

ðp̂1 � p̂2Þ. ð14Þ

Multiplying this by i; cj and putting Bj ¼ cjrw=dhjRw finally gives

�ðkj � MjKÞp̂j þ
K2

ðk0
j � MjKÞ

p̂j ¼ ð�1Þj4iBjðp̂1 � p̂2Þ. (15)

Eq. (15) represents a pair of homogenous linear equations which have non-trivial solutions
(eigenvalues) for the wavenumbers K corresponding to free waves in the porous channels. This
linear equation system can be written as

K2
1 þ 4iB1ðk

0
1 � M1KÞ �4iB1ðk

0
1 � M1KÞ

�4iB2ðk
0
2 � M2KÞ K2

2 þ 4iB2ðk
0
2 � M2KÞ

 !
p̂1

p̂2

 !
¼

0

0

� �
, (16)

where K2
j ¼ K2 � ðkj � MjKÞðk0

j � MjKÞ: Eq. (16) defines a fourth-order algebraic equation for
the wavenumbers Kn; n ¼ 1; 2; 3; 4: To each of the wavenumbers there is a corresponding 2-D
mode (eigenvector) en: The eigenvalues and corresponding modes can be calculated numerically
for instance by using Matlab. Using these eigenvalues and modes a general expression for the
sound field in the filter section can be written as

p̂1ðxÞ

p̂2ðxÞ

 !
¼
X4
n¼1

âne
�iKnxen, (17)

where ân are the modal amplitudes. From this equation the acoustic volume flows can be obtained
by division by the characteristic wave impedance Zj and multiplication with the cross-sectional
area d2

hj of the channels

q̂1ðxÞ

q̂2ðxÞ

 !
¼
X4
n¼1

âne
�iKnxe0n, (18)

where e0j;n ¼ ej;nd2
hj=Zj;n: Eqs. (17) and (18) will now be used to obtain the acoustic four-port in

transfer matrix form for the filter section. First the following relationship between p and q and
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modal amplitudes can be written down

p̂1ðxÞ

p̂2ðxÞ

q̂1ðxÞ

q̂2ðxÞ

0
BBBB@

1
CCCCA ¼

e�iK1xe1 e�iK2xe2 e�iK3xe3 e�iK4xe4

e�iK1xe01 e�iK2xe02 e�iK3xe03 e�iK4xe04

 ! â1

â2

â3

â4

0
BBB@

1
CCCA. (19)

Denoting the 4� 4 matrix in Eq. (19) by HðxÞ and applying this equation to x ¼ 0 and
x ¼ L gives

p̂1ð0Þ

p̂2ð0Þ

q̂1ð0Þ

q̂2ð0Þ

0
BBBB@

1
CCCCA ¼ Hð0Þ

â1

â2

â3

â4

0
BBB@

1
CCCA and

p̂1ðLÞ

p̂2ðLÞ

q̂1ðLÞ

q̂2ðLÞ

0
BBBB@

1
CCCCA ¼ HðLÞ

â1

â2

â3

â4

0
BBB@

1
CCCA.

Solving the modal amplitudes from the second of these equations and putting the result into the
first gives

p̂1ð0Þ

p̂2ð0Þ

q̂1ð0Þ

q̂2ð0Þ

0
BBBB@

1
CCCCA ¼ Hð0ÞH�1ðLÞ

p̂1ðLÞ

p̂2ðLÞ

q̂1ðLÞ

q̂2ðLÞ

0
BBBB@

1
CCCCA. (20)

The four-port matrix ðS ¼ Hð0ÞH�1ðLÞÞ in Eq. (20) can be reduced to a two-port matrix T

by using the rigid wall boundary conditions in channel 1 and 2, i.e., q̂2ð0Þ ¼ 0 and q̂1ðLÞ ¼ 0:
A straightforward derivation reveals that

p̂1ð0Þ

q̂1ð0Þ

 !
¼ T

p̂2ðLÞ

q̂2ðLÞ

 !
with T ¼

S12 � S42S11=S41 S14 � S44S11=S41

S32 � S42S31=S41 S34 � S44S31=S41

 !
. (21)

To obtain the total acoustic volume flow all the open channels ðNÞ at the inlet ðx ¼ 0Þ and the
outlet ðx ¼ LÞ should be added. The volume flows in Eq. (21) should therefore be multiplied by N;
which implies that the two-port matrix TII for the entire filter section (including all channels) is
related to the T-matrix in Eq. (21)

TII ¼
T11 T12=N

NT21 T22

 !
. (22)

2.2.1.1. The no flow case. Since the Mach number is small in the filter section ðo0:1Þ it seems a
good approximation would be to put it to zero in the acoustic model. An analytical solution of the
eigenvalue problem is then possible. Considering the tests of clean filters at room temperature
presented later, the cross-section and speed of sound will also be assumed constant in the filter.
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With these simplifications the wavenumbers and eigenvectors become

K1 ¼ �K2 ¼ k;

K3 ¼ �K4 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8iB=k

p
;

( e1 ¼ e2 ¼
1

1

� �
;

e3 ¼ e4 ¼
1

�1

� �
:

8>>>><
>>>>:

(23)

This case can also serve as a validation case for the coded version of the general model.

2.2.1.2. Choice of speed of sound. To use the 1-D wave model values for the speed of sound ðcÞ

and damping ðaÞ must be supplied. For sound propagation in ducts there exist two asymptotic
cases: (i) low frequencies or narrow ducts; (ii) high frequencies or wide ducts [8]. In case (i) viscous
effects dominate and the speed of sound should be put equal to the isothermal sound speed and a
is related to the pressure drop for a laminar flow profile (see Eq. (7)). For case (ii) the adiabatic
sound speed applies and a frequency-dependent damping should be added. This can be done by
dropping a from the equation of motion and instead adding a term ð1� iÞaj to the wavenumbers
kj; where a corresponds to the classical Kirchhoff value for acoustic damping in pipes [8]. Typical
cross dimensions for the channels in a DPF are 1–2mm. This should be compared with the
thickness of the viscous/thermal acoustic boundary layers, which for air at 20 1C and normal
pressure is around 0.2mm at 100Hz. The low-frequency (case (i)) approximation will be valid
when the acoustic boundary layers have fully merged and at cold conditions this will only be true
for very low frequencies. Therefore for filters tested at room temperature the approximation
obtained by using case (ii) is probably the better choice. But for filters at typical operating
temperatures (500–700 1C) the boundary layers will be significantly thicker (a factor 2.5) and then
case (i) is probably the best choice.

2.2.2. The complete filter model
With reference to Fig. 2 and Eq. (5) two-port models are also needed for the in- and outlet

sections plus the short straight pipe sections (I and III). Concerning the straight pipe sections
these can be modeled using standard models from the literature for narrow pipes with flow.
However, since the length of these pipes is less than 1 cm it is possible to simply add them as an
end correction (mass plug) to the in- and outlet sections. The in- and outlet sections represent an
area constriction and expansion, respectively, where both acoustic and flow near fields can
influence the plane wave transmission. A number of models for acoustic transmission at area
changes exist [9–11], but for low frequencies and small Mach numbers a simple lumped impedance
model can be used. This implies a two-port of the following form:

TX ¼
1 ZX

0 1

� �
, (24)

where X denotes sections INþ I or sections IIIþOUT and the impedance is calculated from

ZX ¼ rX þ
irXolX

d2
hjN

. (25)
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Here r is the acoustic resistance which depends on viscous and flow related losses and l is the end
correction. In the results presented later the viscous contribution to r will be neglected and the
flow related (‘‘turbulent’’) losses will be determined from the quadratic term in Darcy’s law.
Concerning the end correction it will be put equal to the lengths of sections I and III since the
contribution from the openings are much smaller.
Once all the matrices are determined for a filter unit the total two-port is calculated from

Eq. (5). The filter transmission losses can then be obtained from Ref. [10]

TL ¼ 10 log10
1þ M in

1þ Mout

� �2
Zin

4Zout
TDPF

11 þ
TDPF

12

Zout
þ ZinTDPF

21 þ
ZinTDPF

22

Zout

����
����
2

( )
, (26)

where M in; Mout and Zin; Zout are the Mach numbers and the acoustic impedance at the in- and
outlet of the filter.

2.2.3. Temperature and mean-flow gradients

In the model presented above gradients in temperature and mean flow are neglected. For real
cases it is necessary to include such effects and it will be assumed that this can be done by splitting
the filter section into cells with piecewise constant states approximating the continuous variation.
The length of each constant state cell is chosen so that it is much smaller than the wavelength at
the highest frequency of interest. For each cell the four-pole matrix is calculated using the theory
presented above. The four-pole matrices for all cells are then multiplied to obtain the matrix for
the entire filter section. This is then reduced to a two-port as described above.

2.3. Predicted damping for a DPF at operating conditions

To investigate the predictions resulting from the models a typical DPF unit has been analyzed.
The data used for the calculations are summarized in Table 1.
For the fluid state at the inlet of the unit the following data are assumed: Temperature 700 1K,

static pressure 1.0E5 Pa and Mach number 0.020. The fluid is assumed to be an ideal gas (air) and
standard formulas for the temperature dependence of sound speed and viscosity were used [8]. To
obtain the mean flow and temperature distribution corresponding to real DPF units the data and
the models in Refs. [2,3] were used. The results for a clean filter and a filter with soot loading are

shown in Figs. 4–7. Concerning the soot loading a thickness of 1
10

of the wall thickness was

assumed and a permeability of ssoot ¼ 1:5� 10�14: The resulting wall resistance with soot loading
Table 1

Data for the studied DPF

Diameter/length n � 10�5 Channel width Wall thickness Wall permeability

(mm) (channels/m2) dh � 103 (m) ht � 104 (m) sw � 1013 ðm2Þ

150/250 3.10 1.44 3.55 2.50
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Fig. 4. Inlet channel flow speed distribution in the studied DPF unit. � � �; with soot layers; - - - -, without soot layers.

Fig. 5. Outlet channel flow speed distribution in the studied DPF unit. � � �; with soot layers; - - - -, without soot layers.
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added is given by [2,4]

Rw ¼ mw

ht

sw

þ
hsoot

ssoot

� �
. (27)
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Fig. 6. Inlet channel temperature distribution in the studied DPF unit. � � �; with soot layers; - - - -, without soot layers.

Fig. 7. Outlet channel temperature distribution in the studied DPF unit. � � �; with soot layers; - - - -, without soot

layers.
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where sw is the ceramic wall permeability. The chosen thickness of the soot layer corresponds to a
value typical for the state just before filter regeneration would start.
Using the 1-D wave model the transmission loss has been calculated for the filter defined in

Table 1 for a Mach number of 0.020 in the inlet duct. For the sound propagation in the channels it
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Fig. 8. Predicted transmission loss for the studied filter unit at M ¼ 0:02 and T ¼ 700 �K before the filter inlet. . . . :;
Predicted for no flow and no soot; &&&; predicted for no flow in the channels and no soot BUT with flow losses at

the inlet/outlet; - - - -, predicted with flow and no soot ; � � �; predicted with flow and soot layer.
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is assumed that case (i) holds, i.e., isothermal speed of sound and fully merged acoustic boundary
layers (see Section 2.2.1.2). The results are shown in Fig. 8. As can be seen from the three clean
filter curves, the effect of mean-flow convection on the damping is small and can be neglected.
This means that for the acoustic analysis there is actually no need to determine the flow
distribution in the filter. Flow effects can be neglected and the flow is only important for the
estimation of the quadratic pressure drop at the outlet side (see Eq. (28)). Concerning the exact
temperature distribution tests show that a very good approximation for the damping, the error is
typically around 0.3 dB, is obtained by using a constant temperature equal to the average. A large
effect of soot loading on the filter damping is also observed, which of course is related to a
pressure drop increase due to the soot layer.
3. Measurements and model validation

3.1. Pressure drop measurements

The clean filter units tested were all mounted in 150mm steel pipes which were connected to the
flow test rig at the Marcus Wallenberg Laboratory, see Fig. 9. The pressure drop across the filters
was measured using an electronic manometer (Swema Air 300), the average flow speed before the
filter was measured using a pitot-tube connected to the same manometer and fixed at 2:5D from
the inlet of the filter. The filter was fixed at a distance of 20D from the diverging conical part
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Table 2

Data for the tested DPF units including the flow loss coefficients (at 20 1C) determined from the pressure drop

measurements

Filter Channel Wall thickness Permeability n � 10�5 R1 R2

name width ht � 104 (m) sw � 1013 (m2) (channels/m2) ðNs=m3Þ ðNs2=m4Þ

dh � 103 (m)

EX 200/14 1.44 3.55 2.5 3.10 184.1 39.2

EX 100/17 2.11 4.30 2.5 1.55 199.8 30.9

RC 200/12 1.50 3.04 25 3.87 87.1 29.2

RC 200/20 1.30 5.08 25 2.48 233.3 41.6

Fig. 9. Layout of the test rig for measurement of the filter pressure drop.
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connected to a pressure chamber, where D is the diameter of the steel pipe. Fluctuations in the
pressure measurements at the filter were typically 	1Pas:
Four different filters were tested; they all had the length 250mm and the codes EX80: (200/14);

EX80: (100/17); RC: (200/12), and RC: (200/20) where ðx=yÞ stands for the number of cells per
square inch/wall thickness in inch multiplied by 1000. A summary of the data for the filters is
presented in Table 2.
The filters were tested for flow speeds up to 15m/s and for every flow speed the filter pressure

drop was measured twice, first with the flow rate increasing and then with the flow rate decreasing.
Careful attention was paid to prevent and detect any leakage from the entrance and exit of the
filters. To avoid leakage in the system the pressure drop measurements were made close to the
filters, and seals were used for the ducts sections. A plot of the filter pressure drop data versus flow
speed is shown in Fig. 10. The constants R1 and R2 in Eq. (1) were calculated based on a least-
squares procedure and the results are summarized in Table 2.
The data in Table 2 is used for the predictions with the lumped impedance model in Section 3.2.

It can be noticed that the linear flow coefficient ðR1Þ can be related to the wall resistance ðRwÞ and
the laminar pressure drop through channels [2,4] via

Rw ¼ 4R1dh1LN=A. (28)

The quadratic ðR2Þ flow coefficient is related to flow separation at the inlet/outlet sections and
‘‘turbulent’’ channel flow [2,4]. Typical Reynolds numbers at the inlet/outlet of the filters (based
on channel width) for the tests reported here are 2000–4000, i.e., above the critical value. This
implies that a turbulent flow exists at least in a part of the inlet/outlet channels. But since the flow
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Fig. 10. Mean-flow velocity versus pressure drop (at 20 1C) for various types of clean filters. 
 
 
;Measured (200/20);

-.-., best fit for (200/20); � � �; measured (200/14), . . . :; best fit for (200/14); &&&; measured (100/17); - - - -, best fit for

(100/17); � � �; measured (200/12); —, best fit for (200/12).
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speed exhibits a decrease along the inlet channels and increase along the outlet channels, due to the
flow through the porous walls, there is also a laminar flow section. At operating conditions and
with (say) a temperature of 500 1C the kinematic viscosity (assuming unchanged static pressure)
will increase with a factor close to 4. The Reynolds number at the inlet/outlet sections will then
decrease to values in the range 500–1000. This means that laminar flow will exist everywhere in the
channels and the only possible quadratic pressure drop comes from flow separation at the inlet and
outlet openings. Assuming an incompressible mean flow this implies [12]

R2 ¼
rINð1� 1=mINÞ

2=4;

rOUTð1� 1=mOUTÞ
2=2;

(
(29)

where mIN and mOUT is the open area ratio at the inlet and outlet, respectively.
In the 1-D wave model this flow related loss is included by putting: rX ¼ 2R2U=A in Eq. (25),

where X corresponds to INþ I or IIIþOUT and U equals the flow speed at the IN or OUT section
respectively. The result in Eq. (29) implies that the total quadratic pressure drop coefficient ðR2Þ will
be of the order 2–3Ns2=m4 for the hot case, which compared to the values measured at cold
conditions is a significant reduction. In practice this implies that there will be much weaker flow
dependence for the filter damping at operating conditions as compared to the cold (20 1C) case.

3.2. Nonlinear effects

The highest sound levels will exist at the lowest engine harmonics ðo100HzÞ where the filter can
be seen as a lumped resistive element. Assuming linear plane waves at the inlet and outlet side and
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modeling the filter response via Darcy’s law with Forschheimer’s extension, Eq. (1), the effect of
the quadratic filter response can be investigated. Based on the data presented in Table 2 valid for
cold conditions (20 1C), it was found that nonlinear effects were negligible up to incident sound
levels of 150 dB. As noted above at hot conditions the quadratic term will be significantly reduced,
which implies that under real operating conditions the effect of local nonlinearities at a DPF
should be small.

3.3. Comparison between measured and calculated transmission loss

The acoustic two-ports were also measured for the filter units defined in Table 2. The test rig for
the pressure drop measurements was modified as shown in Fig. 11. Eight loudspeakers were used
as acoustic sources equally divided between the upstream and downstream side. Two dissipative
silencers were used one up and one down stream to reduce the effects of standing waves in the
measurements. Fluctuating pressures were measured using six-condenser microphones (Brüel &
Kjaer 1/4-inch 4938) flush mounted in the duct wall. Measurements were carried out in the plane
wave range (0–1250Hz) with a stepped-sine signal and flow noise suppression was done by
correlation with the loudspeaker voltage. The two-port matrix was determined using the so-called
source switching technique as described in Ref. [13].
In Figs. 12–15 transmission loss calculated from the measured two-port data is presented for a

Mach number corresponding to a typical operating condition. In the figures predictions based
both on the lumped impedance model and the 1-D wave model are shown. Concerning the lumped
model the input for the calculations are the measured pressure drop data from Table 2.
Concerning the 1-D wave model the wall resistance for the filters is calculated using the data in
Table 2 and Eq. (9). For this cold case (20 1C) the speed of sound and the damping in the channels
was assumed to follow case (ii) (see Section 2.2.1.2). As an alternative the total viscous damping
from the walls was estimated by the measured linear pressure drop coefficient ðR1Þ using Eq. (28).
This was combined with the adiabatic speed of sound (as in case (ii)) and aj ¼ 0 in Eq. (7). To
estimate the flow related losses at the inlet and outlet (see Eq. (25)) the following formula is
proposed

rIþIN ¼ rIIIþOUT ¼ R2U0=A, (30)
Fig. 11. Layout of the MWL test rig for determination of acoustic two-port data.
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Fig. 12. Measured and predicted transmission loss for the (EX200/14) filter with M ¼ 0:02 at the filter inlet. � � �;
Measured; —, predicted using lumped model; - - - -, predicted using 1-D model with measured wall resistance; þþþ;
predicted using 1-D model (case (ii)).

Fig. 13. Measured and predicted transmission loss for the (RC200/12) filter with M ¼ 0:015 at the filter inlet. � � �;
Measured; —, predicted using lumped model; - - - -, predicted using 1-D model with measured wall resistance; þþþ;
predicted using 1-D model (case (ii)).
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Fig. 14. Measured and predicted transmission loss for the (EX100/17) filter with M ¼ 0:020 at the filter inlet. � � �;
Measured; —, predicted using lumped model; - - - -, predicted using 1-D model with measured wall resistance; þþþ;
predicted using 1-D model (case (ii)).

Fig. 15. Measured and predicted transmission loss for the (RC200/20) filter with M ¼ 0:021 at the filter inlet. � � �;
Measured; —, predicted using lumped model; - - - -, predicted using 1-D model with measured wall resistance; predicted

using 1-D model (case (ii)).

S. Allam, M. Åbom / Journal of Sound and Vibration 288 (2005) 255–273 271
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where it is assumed that the losses are equally distributed between the in- and outlet. This formula
means that the quadratic flow loss is modeled as a lumped acoustic resistance, i.e., that it occupies
a region that is acoustically compact.
As can be seen from Figs. 12–15 the agreement for the lumped model is satisfactory up to

200–300Hz. The 1-D model using the case (ii) assumptions to estimate the speed of sound and
damping agrees well with the measured data, except at low frequencies ðo200HzÞ: The 1-D model
using the experimentally determined wall resistance values shows a better agreement for low
frequencies, but becomes oscillating for higher frequencies.
4. Results and discussion

Two different models for calculating the acoustic two-port of diesel particulate filters have been
presented. The models have been compared with experimental data and the agreement is
satisfactory. The 1-D wave model (Section 2.2) works in the entire plane wave range and the
simple lumped model (Section 2.1) works up to 200–300Hz. Under real hot conditions this would
mean 400–600Hz. To continue the work and improve the 1-D model the acoustic damping along
narrow channels with porous walls should be investigated further. Also measurements at hot
conditions are necessary to finally validate the 1-D model and to check for instance if chemical
reactions (a slow burning of soot) will influence the behavior.
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